SYNOPSIS
git checkout [-q] [-f] [-m] [<branch>] git checkout [-q] [-f] [-m] --detach [<branch>] git checkout [-q] [-f] [-m] [--detach] <commit> git checkout [-q] [-f] [-m] [[-b|-B|--orphan] <new_branch>] [<start_point>] git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] [--] <pathspec>… git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] --pathspec-from-file=<file> [--pathspec-file-nul] git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>…]
DESCRIPTION
Updates files in the working tree to match the version in the index
or the specified tree. If no pathspec was given, git checkout will
also update HEAD
to set the specified branch as the current
branch.
- git checkout [<branch>]
-
To prepare for working on
<branch>
, switch to it by updating the index and the files in the working tree, and by pointingHEAD
at the branch. Local modifications to the files in the working tree are kept, so that they can be committed to the<branch>
.If
<branch>
is not found but there does exist a tracking branch in exactly one remote (call it<remote>
) with a matching name and--no-guess
is not specified, treat as equivalent to$ git checkout -b <branch> --track <remote>/<branch>
You could omit
<branch>
, in which case the command degenerates to "check out the current branch", which is a glorified no-op with rather expensive side-effects to show only the tracking information, if exists, for the current branch. - git checkout -b|-B <new_branch> [<start point>]
-
Specifying
-b
causes a new branch to be created as if git-branch(1) were called and then checked out. In this case you can use the--track
or--no-track
options, which will be passed to git branch. As a convenience,--track
without-b
implies branch creation; see the description of--track
below.If
-B
is given,<new_branch>
is created if it doesn’t exist; otherwise, it is reset. This is the transactional equivalent of$ git branch -f <branch> [<start point>] $ git checkout <branch>
that is to say, the branch is not reset/created unless "git checkout" is successful.
- git checkout --detach [<branch>]
- git checkout [--detach] <commit>
-
Prepare to work on top of
<commit>
, by detachingHEAD
at it (see "DETACHED HEAD" section), and updating the index and the files in the working tree. Local modifications to the files in the working tree are kept, so that the resulting working tree will be the state recorded in the commit plus the local modifications.When the
<commit>
argument is a branch name, the--detach
option can be used to detachHEAD
at the tip of the branch (git checkout <branch>
would check out that branch without detachingHEAD
).Omitting
<branch>
detachesHEAD
at the tip of the current branch. - git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] [--] <pathspec>…
- git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] --pathspec-from-file=<file> [--pathspec-file-nul]
-
Overwrite the contents of the files that match the pathspec. When the
<tree-ish>
(most often a commit) is not given, overwrite working tree with the contents in the index. When the<tree-ish>
is given, overwrite both the index and the working tree with the contents at the<tree-ish>
.The index may contain unmerged entries because of a previous failed merge. By default, if you try to check out such an entry from the index, the checkout operation will fail and nothing will be checked out. Using
-f
will ignore these unmerged entries. The contents from a specific side of the merge can be checked out of the index by using--ours
or--theirs
. With-m
, changes made to the working tree file can be discarded to re-create the original conflicted merge result. - git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>…]
-
This is similar to the previous mode, but lets you use the interactive interface to show the "diff" output and choose which hunks to use in the result. See below for the description of
--patch
option.
OPTIONS
- -q
- --quiet
-
Quiet, suppress feedback messages.
- --progress
- --no-progress
-
Progress status is reported on the standard error stream by default when it is attached to a terminal, unless
--quiet
is specified. This flag enables progress reporting even if not attached to a terminal, regardless of--quiet
. - -f
- --force
-
When switching branches, proceed even if the index or the working tree differs from
HEAD
. This is used to throw away local changes.When checking out paths from the index, do not fail upon unmerged entries; instead, unmerged entries are ignored.
- --ours
- --theirs
-
When checking out paths from the index, check out stage #2 (ours) or #3 (theirs) for unmerged paths.
Note that during
git rebase
andgit pull --rebase
, ours and theirs may appear swapped;--ours
gives the version from the branch the changes are rebased onto, while--theirs
gives the version from the branch that holds your work that is being rebased.This is because
rebase
is used in a workflow that treats the history at the remote as the shared canonical one, and treats the work done on the branch you are rebasing as the third-party work to be integrated, and you are temporarily assuming the role of the keeper of the canonical history during the rebase. As the keeper of the canonical history, you need to view the history from the remote asours
(i.e. "our shared canonical history"), while what you did on your side branch astheirs
(i.e. "one contributor’s work on top of it"). - -b <new_branch>
-
Create a new branch named
<new_branch>
and start it at<start_point>
; see git-branch(1) for details. - -B <new_branch>
-
Creates the branch
<new_branch>
and start it at<start_point>
; if it already exists, then reset it to<start_point>
. This is equivalent to running "git branch" with "-f"; see git-branch(1) for details. - -t
- --track
-
When creating a new branch, set up "upstream" configuration. See "--track" in git-branch(1) for details.
If no
-b
option is given, the name of the new branch will be derived from the remote-tracking branch, by looking at the local part of the refspec configured for the corresponding remote, and then stripping the initial part up to the "*". This would tell us to usehack
as the local branch when branching off oforigin/hack
(orremotes/origin/hack
, or evenrefs/remotes/origin/hack
). If the given name has no slash, or the above guessing results in an empty name, the guessing is aborted. You can explicitly give a name with-b
in such a case. - --no-track
-
Do not set up "upstream" configuration, even if the
branch.autoSetupMerge
configuration variable is true. - --guess
- --no-guess
-
If
<branch>
is not found but there does exist a tracking branch in exactly one remote (call it<remote>
) with a matching name, treat as equivalent to$ git checkout -b <branch> --track <remote>/<branch>
If the branch exists in multiple remotes and one of them is named by the
checkout.defaultRemote
configuration variable, we’ll use that one for the purposes of disambiguation, even if the<branch>
isn’t unique across all remotes. Set it to e.g.checkout.defaultRemote=origin
to always checkout remote branches from there if<branch>
is ambiguous but exists on the origin remote. See alsocheckout.defaultRemote
in git-config(1).Use
--no-guess
to disable this. - -l
-
Create the new branch’s reflog; see git-branch(1) for details.
- --detach
-
Rather than checking out a branch to work on it, check out a commit for inspection and discardable experiments. This is the default behavior of
git checkout <commit>
when<commit>
is not a branch name. See the "DETACHED HEAD" section below for details. - --orphan <new_branch>
-
Create a new orphan branch, named
<new_branch>
, started from<start_point>
and switch to it. The first commit made on this new branch will have no parents and it will be the root of a new history totally disconnected from all the other branches and commits.The index and the working tree are adjusted as if you had previously run
git checkout <start_point>
. This allows you to start a new history that records a set of paths similar to<start_point>
by easily runninggit commit -a
to make the root commit.This can be useful when you want to publish the tree from a commit without exposing its full history. You might want to do this to publish an open source branch of a project whose current tree is "clean", but whose full history contains proprietary or otherwise encumbered bits of code.
If you want to start a disconnected history that records a set of paths that is totally different from the one of
<start_point>
, then you should clear the index and the working tree right after creating the orphan branch by runninggit rm -rf .
from the top level of the working tree. Afterwards you will be ready to prepare your new files, repopulating the working tree, by copying them from elsewhere, extracting a tarball, etc. - --ignore-skip-worktree-bits
-
In sparse checkout mode,
git checkout -- <paths>
would update only entries matched by<paths>
and sparse patterns in$GIT_DIR/info/sparse-checkout
. This option ignores the sparse patterns and adds back any files in<paths>
. - -m
- --merge
-
When switching branches, if you have local modifications to one or more files that are different between the current branch and the branch to which you are switching, the command refuses to switch branches in order to preserve your modifications in context. However, with this option, a three-way merge between the current branch, your working tree contents, and the new branch is done, and you will be on the new branch.
When a merge conflict happens, the index entries for conflicting paths are left unmerged, and you need to resolve the conflicts and mark the resolved paths with
git add
(orgit rm
if the merge should result in deletion of the path).When checking out paths from the index, this option lets you recreate the conflicted merge in the specified paths.
When switching branches with
--merge
, staged changes may be lost. - --conflict=<style>
-
The same as
--merge
option above, but changes the way the conflicting hunks are presented, overriding themerge.conflictStyle
configuration variable. Possible values are "merge" (default) and "diff3" (in addition to what is shown by "merge" style, shows the original contents). - -p
- --patch
-
Interactively select hunks in the difference between the
<tree-ish>
(or the index, if unspecified) and the working tree. The chosen hunks are then applied in reverse to the working tree (and if a<tree-ish>
was specified, the index).This means that you can use
git checkout -p
to selectively discard edits from your current working tree. See the “Interactive Mode” section of git-add(1) to learn how to operate the--patch
mode.Note that this option uses the no overlay mode by default (see also
--overlay
), and currently doesn’t support overlay mode. - --ignore-other-worktrees
-
git checkout
refuses when the wanted ref is already checked out by another worktree. This option makes it check the ref out anyway. In other words, the ref can be held by more than one worktree. - --overwrite-ignore
- --no-overwrite-ignore
-
Silently overwrite ignored files when switching branches. This is the default behavior. Use
--no-overwrite-ignore
to abort the operation when the new branch contains ignored files. - --recurse-submodules
- --no-recurse-submodules
-
Using
--recurse-submodules
will update the content of all initialized submodules according to the commit recorded in the superproject. If local modifications in a submodule would be overwritten the checkout will fail unless-f
is used. If nothing (or--no-recurse-submodules
) is used, the work trees of submodules will not be updated. Just like git-submodule(1), this will detachHEAD
of the submodule. - --overlay
- --no-overlay
-
In the default overlay mode,
git checkout
never removes files from the index or the working tree. When specifying--no-overlay
, files that appear in the index and working tree, but not in<tree-ish>
are removed, to make them match<tree-ish>
exactly. - --pathspec-from-file=<file>
-
Pathspec is passed in
<file>
instead of commandline args. If<file>
is exactly-
then standard input is used. Pathspec elements are separated by LF or CR/LF. Pathspec elements can be quoted as explained for the configuration variablecore.quotePath
(see git-config(1)). See also--pathspec-file-nul
and global--literal-pathspecs
. - --pathspec-file-nul
-
Only meaningful with
--pathspec-from-file
. Pathspec elements are separated with NUL character and all other characters are taken literally (including newlines and quotes). - <branch>
-
Branch to checkout; if it refers to a branch (i.e., a name that, when prepended with "refs/heads/", is a valid ref), then that branch is checked out. Otherwise, if it refers to a valid commit, your
HEAD
becomes "detached" and you are no longer on any branch (see below for details).You can use the
@{-N}
syntax to refer to the N-th last branch/commit checked out using "git checkout" operation. You may also specify-
which is synonymous to@{-1}
.As a special case, you may use
A...B
as a shortcut for the merge base ofA
andB
if there is exactly one merge base. You can leave out at most one ofA
andB
, in which case it defaults toHEAD
. - <new_branch>
-
Name for the new branch.
- <start_point>
-
The name of a commit at which to start the new branch; see git-branch(1) for details. Defaults to
HEAD
.As a special case, you may use
"A...B"
as a shortcut for the merge base ofA
andB
if there is exactly one merge base. You can leave out at most one ofA
andB
, in which case it defaults toHEAD
. - <tree-ish>
-
Tree to checkout from (when paths are given). If not specified, the index will be used.
- --
-
Do not interpret any more arguments as options.
- <pathspec>…
-
Limits the paths affected by the operation.
For more details, see the pathspec entry in gitglossary(7).
DETACHED HEAD
HEAD
normally refers to a named branch (e.g. master
). Meanwhile, each
branch refers to a specific commit. Let’s look at a repo with three
commits, one of them tagged, and with branch master
checked out:
HEAD (refers to branch 'master')
|
v
a---b---c branch 'master' (refers to commit 'c')
^
|
tag 'v2.0' (refers to commit 'b')
When a commit is created in this state, the branch is updated to refer to
the new commit. Specifically, git commit creates a new commit d
, whose
parent is commit c
, and then updates branch master
to refer to new
commit d
. HEAD
still refers to branch master
and so indirectly now refers
to commit d
:
$ edit; git add; git commit
HEAD (refers to branch 'master')
|
v
a---b---c---d branch 'master' (refers to commit 'd')
^
|
tag 'v2.0' (refers to commit 'b')
It is sometimes useful to be able to checkout a commit that is not at
the tip of any named branch, or even to create a new commit that is not
referenced by a named branch. Let’s look at what happens when we
checkout commit b
(here we show two ways this may be done):
$ git checkout v2.0 # or
$ git checkout master^^
HEAD (refers to commit 'b')
|
v
a---b---c---d branch 'master' (refers to commit 'd')
^
|
tag 'v2.0' (refers to commit 'b')
Notice that regardless of which checkout command we use, HEAD
now refers
directly to commit b
. This is known as being in detached HEAD
state.
It means simply that HEAD
refers to a specific commit, as opposed to
referring to a named branch. Let’s see what happens when we create a commit:
$ edit; git add; git commit
HEAD (refers to commit 'e')
|
v
e
/
a---b---c---d branch 'master' (refers to commit 'd')
^
|
tag 'v2.0' (refers to commit 'b')
There is now a new commit e
, but it is referenced only by HEAD
. We can
of course add yet another commit in this state:
$ edit; git add; git commit
HEAD (refers to commit 'f')
|
v
e---f
/
a---b---c---d branch 'master' (refers to commit 'd')
^
|
tag 'v2.0' (refers to commit 'b')
In fact, we can perform all the normal Git operations. But, let’s look
at what happens when we then checkout master
:
$ git checkout master
HEAD (refers to branch 'master')
e---f |
/ v
a---b---c---d branch 'master' (refers to commit 'd')
^
|
tag 'v2.0' (refers to commit 'b')
It is important to realize that at this point nothing refers to commit
f
. Eventually commit f
(and by extension commit e
) will be deleted
by the routine Git garbage collection process, unless we create a reference
before that happens. If we have not yet moved away from commit f
,
any of these will create a reference to it:
$ git checkout -b foo <1>
$ git branch foo <2>
$ git tag foo <3>
-
creates a new branch
foo
, which refers to commitf
, and then updatesHEAD
to refer to branchfoo
. In other words, we’ll no longer be in detachedHEAD
state after this command. -
similarly creates a new branch
foo
, which refers to commitf
, but leavesHEAD
detached. -
creates a new tag
foo
, which refers to commitf
, leavingHEAD
detached.
If we have moved away from commit f
, then we must first recover its object
name (typically by using git reflog), and then we can create a reference to
it. For example, to see the last two commits to which HEAD
referred, we
can use either of these commands:
$ git reflog -2 HEAD # or
$ git log -g -2 HEAD
ARGUMENT DISAMBIGUATION
When there is only one argument given and it is not --
(e.g. git
checkout abc
), and when the argument is both a valid <tree-ish>
(e.g. a branch abc
exists) and a valid <pathspec>
(e.g. a file
or a directory whose name is "abc" exists), Git would usually ask
you to disambiguate. Because checking out a branch is so common an
operation, however, git checkout abc
takes "abc" as a <tree-ish>
in such a situation. Use git checkout -- <pathspec>
if you want
to checkout these paths out of the index.
EXAMPLES
-
The following sequence checks out the
master
branch, reverts theMakefile
to two revisions back, deleteshello.c
by mistake, and gets it back from the index.$ git checkout master <1> $ git checkout master~2 Makefile <2> $ rm -f hello.c $ git checkout hello.c <3>
-
switch branch
-
take a file out of another commit
-
restore
hello.c
from the indexIf you want to check out all C source files out of the index, you can say
$ git checkout -- '*.c'
Note the quotes around
*.c
. The filehello.c
will also be checked out, even though it is no longer in the working tree, because the file globbing is used to match entries in the index (not in the working tree by the shell).If you have an unfortunate branch that is named
hello.c
, this step would be confused as an instruction to switch to that branch. You should instead write:$ git checkout -- hello.c
-
-
After working in the wrong branch, switching to the correct branch would be done using:
$ git checkout mytopic
However, your "wrong" branch and correct
mytopic
branch may differ in files that you have modified locally, in which case the above checkout would fail like this:$ git checkout mytopic error: You have local changes to 'frotz'; not switching branches.
You can give the
-m
flag to the command, which would try a three-way merge:$ git checkout -m mytopic Auto-merging frotz
After this three-way merge, the local modifications are not registered in your index file, so
git diff
would show you what changes you made since the tip of the new branch. -
When a merge conflict happens during switching branches with the
-m
option, you would see something like this:$ git checkout -m mytopic Auto-merging frotz ERROR: Merge conflict in frotz fatal: merge program failed
At this point,
git diff
shows the changes cleanly merged as in the previous example, as well as the changes in the conflicted files. Edit and resolve the conflict and mark it resolved withgit add
as usual:$ edit frotz $ git add frotz
SEE ALSO
GIT
Part of the git(1) suite